2,093 research outputs found

    Andreev scattering in nanoscopic junctions at high magnetic fields

    Full text link
    We report on the measurement of multiple Andreev resonances at atomic size point contacts between two superconducting nanostructures of Pb under magnetic fields higher than the bulk critical field, where superconductivity is restricted to a mesoscopic region near the contact. The small number of conduction channels in this type of contacts permits a quantitative comparison with theory through the whole field range. We discuss in detail the physical properties of our structure, in which the normal bulk electrodes induce a proximity effect into the mesoscopic superconducting part.Comment: 4 page

    Space-time in light of Karolyhazy uncertainty relation

    Get PDF
    General relativity and quantum mechanics provide a natural explanation for the existence of dark energy with its observed value and predict its dynamics. Dark energy proves to be necessary for the existence of space-time itself and determines the rate of its stability.Comment: 5 pages, Two misprints are correcte

    Time-inconsistent Planning: Simple Motivation Is Hard to Find

    Full text link
    With the introduction of the graph-theoretic time-inconsistent planning model due to Kleinberg and Oren, it has been possible to investigate the computational complexity of how a task designer best can support a present-biased agent in completing the task. In this paper, we study the complexity of finding a choice reduction for the agent; that is, how to remove edges and vertices from the task graph such that a present-biased agent will remain motivated to reach his target even for a limited reward. While this problem is NP-complete in general, this is not necessarily true for instances which occur in practice, or for solutions which are of interest to task designers. For instance, a task designer may desire to find the best task graph which is not too complicated. We therefore investigate the problem of finding simple motivating subgraphs. These are structures where the agent will modify his plan at most kk times along the way. We quantify this simplicity in the time-inconsistency model as a structural parameter: The number of branching vertices (vertices with out-degree at least 22) in a minimal motivating subgraph. Our results are as follows: We give a linear algorithm for finding an optimal motivating path, i.e. when k=0k=0. On the negative side, we show that finding a simple motivating subgraph is NP-complete even if we allow only a single branching vertex --- revealing that simple motivating subgraphs are indeed hard to find. However, we give a pseudo-polynomial algorithm for the case when kk is fixed and edge weights are rationals, which might be a reasonable assumption in practice.Comment: An extended abstract of this paper is accepted at AAAI 202

    Influence of the confinement geometry on surface superconductivity

    Full text link
    The nucleation field for surface superconductivity, Hc3H_{c3}, depends on the geometrical shape of the mesoscopic superconducting sample and is substantially enhanced with decreasing sample size. As an example we studied circular, square, triangular and wedge shaped disks. For the wedge the nucleation field diverges as Hc3/Hc2=3/αH_{c3}/H_{c2}=\sqrt{3}/\alpha with decreasing angle (α\alpha) of the wedge, where Hc2H_{c2} is the bulk upper critical field.Comment: 4 pages, 3 figures. Accepted for publication in Phys. Rev.

    Electron locking in semiconductor superlattices

    Get PDF
    We describe a novel state of electrons and phonons arising in semiconductor superlattices (SSL) due to strong electron-phonon interactions. These states are characterized by a localization of phonons and a self-trapping or locking of electrons in one or several quantum wells due to an additional, deformational potential arising around these locking wells in SSL. The effect is enhanced in a longitudinal magnetic field. Using the tight-binding and adiabatic approximations the whole energy spectrum of the self-trapped states is found and accurate, analytic expressions are included for strong electron-phonon coupling. Finally, we discuss possible experiments which may detect these predicted self-trapped states.Comment: 8 pages, 2 figures. Please note that the published article has the title 'Electron locking in layered structures by a longitudinal magnetic field

    Characteristic Potentials for Mesoscopic Rings Threaded by an Aharonov-Bohm Flux

    Full text link
    Electro-static potentials for samples with the topology of a ring and penetrated by an Aharonov-Bohm flux are discussed. The sensitivity of the electron-density distribution to small variations in the flux generates an effective electro-static potential which is itself a periodic function of flux. We investigate a simple model in which the flux sensitive potential leads to a persistent current which is enhanced compared to that of a loop of non-interacting electrons. For sample geometries with contacts the sensitivity of the electro-static potential to flux leads to a flux-induced capacitance. This capacitance gives the variation in charge due to an increment in flux. The flux-induced capacitance is contrasted with the electro-chemical capacitance which gives the variation in charge due to an increment in an electro-chemical potential. The discussion is formulated in terms of characteristic functions which give the variation of the electro-static potential in the interior of the conductor due to an increment in the external control parameters (flux, electro-chemical potentials). Paper submitted to the 16th Nordic Semiconductor Meeting, Laugarvatan, Iceland, June 12-15, 1994. The proceedings will be published in Physica Scripta.Comment: 23 pages + 4 figures, revtex, IBM-RC1955

    Spanning directed trees with many leaves

    Get PDF
    The {\sc Directed Maximum Leaf Out-Branching} problem is to find an out-branching (i.e. a rooted oriented spanning tree) in a given digraph with the maximum number of leaves. In this paper, we obtain two combinatorial results on the number of leaves in out-branchings. We show that - every strongly connected nn-vertex digraph DD with minimum in-degree at least 3 has an out-branching with at least (n/4)1/31(n/4)^{1/3}-1 leaves; - if a strongly connected digraph DD does not contain an out-branching with kk leaves, then the pathwidth of its underlying graph UG(DD) is O(klogk)O(k\log k). Moreover, if the digraph is acyclic, the pathwidth is at most 4k4k. The last result implies that it can be decided in time 2O(klog2k)nO(1)2^{O(k\log^2 k)}\cdot n^{O(1)} whether a strongly connected digraph on nn vertices has an out-branching with at least kk leaves. On acyclic digraphs the running time of our algorithm is 2O(klogk)nO(1)2^{O(k\log k)}\cdot n^{O(1)}

    Similarity reduction of the modified Yajima-Oikawa equation

    Full text link
    We study a similarity reduction of the modified Yajima-Oikawa hierarchy. The hierarchy is associated with a non-standard Heisenberg subalgebra in the affine Lie algebra of type A_2^{(1)}. The system of equations for self-similar solutions is presented as a Hamiltonian system of degree of freedom two, and admits a group of B\"acklund transformations isomorphic to the affine Weyl group of type A_2^{(1)}. We show that the system is equivalent to a two-parameter family of the fifth Painlev\'e equation.Comment: latex2e file, 18 pages, no figures; (v2)Introduction is modified. Some typos are correcte

    On the angular distribution of extensive air showers

    Full text link
    Angular distributions of extensive air showers with different number of charged particles in the range 2.5x10^5--4x10^7 are derived using the experimental data obtained with the EAS MSU array. Possible approximations of the obtained distributions with different empiric functions available in literature, are analysed. It is shown that the exponential function provides the best approximation of the angular distributions in the sense of the chi-squared criterion.Comment: 5 pages including 1 figur
    corecore